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The theory for thermoacoustic mixture separation is extended to include the effects of a nonzero
concentration gradient. New data are presented, which are in excellent agreement with this theory.
The maximum concentration gradient which may be achieved in a binary mixture of gases through
this separation process is intrinsically limited by the fractional pressure amplitude, by the tidal
displacement, and by the size of the thermal diffusion ratio. Ordinary diffusion further detracts from
the attainable final concentration gradient and can become the dominant remixing process as the
cross section of the duct is increased. Rayleigh streaming also works against thermoacoustic
separation, and an estimate of the molar flux from streaming is given. ©2002 Acoustical Society
of America. @DOI: 10.1121/1.1453449#

PACS numbers: 43.35.Ud, 43.20.Mv, 43.35.Ty@SGK#
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I. INTRODUCTION

Recently, Swift and Spoor1 ~S&S! showed theoretically
how the propagation of acoustic waves through a mixture
gases in a duct can cause the time-averaged separatio
light and heavy molecules along the wave-propagation di
tion by means of processes occurring at the boundary la
The separation is second order in the dynamical varia
and can lead to large separation rates and concentration
dients. The strength of this separation mechanism depe
both on the properties of the gas mixture and on the pha
of the acoustic field. Spoor and Swift2 experimentally found
that the separation saturates exponentially, and they w
able to generate final concentration gradients as large as
per meter for 50–50 He–Ar starting mixtures in a tube
approximately 5 mm diameter. However, the focus of th
attention was on the initial rate of separation, before sign
cant concentration gradients had developed, because
theory of S&S was limited to that situation.

In this paper, we investigate the separation process in
presence of a nonzero concentration gradient in order to
derstand the saturation separation. Several processes
against the separation mechanism of S&S to determine
final gradient. Our most important new result is that the se
ration in a duct is intrinsically limited by the square of th
amplitude of displacement of the gas in the acoustic wave
addition, the remixing arising from concentration-gradie
driven mutual diffusion is typically a large effect. Althoug
we do not study the effect thoroughly here, Rayleigh strea
ing may also contribute a substantial remixing flux, depe
ing on the shape of the duct and on the intensity of
acoustic field.

In what follows, we first introduce and define the impo
tant physical and mathematical parameters in this probl
We then present a heuristic argument, assuming stand
wave phasing, for the intrinsic limitation of the separati
process. In the next few sections we extend the S&S the
to lowest order in the concentration gradient and find
expression determining the saturation of the separation
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cess. We conclude by describing our experiments suppor
this more complete theory.

II. IMPORTANT QUANTITIES

Since early in the last century,3 it has been understoo
that application of a thermal gradient to a binary mixture
gases can yield a gradient in the molar concentrations of
constituent gases. Ordinary mutual diffusion opposes
thermal diffusion process; and for a closed, isobaric volu
of a mixture, the steady state is reached when

¹nH52kT¹ ln T, ~1!

wherenH is, by convention, the mole fraction of the heavi
of the two gases andkT is called the thermal diffusion ratio
Frequently—but not always—thermal diffusion drives t
heavier gas toward the lower temperature region, so th
conventions normally lead to positive values forkT . For
He–Ar, the binary mixture used in our experiments, we u
kT50.38 (12nH)1.2nH

0.8 based on a fit to the data of Atkin
et al.4

Following S&S, our analysis is based on the notation
Landau and Lifshitz,5 which accounts for the concentration
of gases by mass fraction instead of mole fraction. Hence,
define the heavy mass fractionc by

c5nHmH /mavg, ~2!

where the molar-average massmavg can be expressed in e
ther of two ways

mavg5nHmH1~12nH!mL , ~3!

mavg
215cmH

211~12c!mL
21 , ~4!

andmL andmH are the molar masses of the light and hea
gases, respectively. In order to write the mass flux den
from diffusion in terms ofc rather thann, we must use the
scaled thermal diffusion ratio

kT85kTmLmH /mavg
2 , ~5!

which is Eq.~44! in S&S, in place ofkT .
1675675/10/$19.00 © 2002 Acoustical Society of America
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The effect in which we are interested occurs via acou
processes within the thermal and viscous boundary layers
study this analytically, we consider the gas in an acou
duct, with sound of a single frequencyf propagating along
the axis of the duct. The wavelengthl5a/ f , wherea is the
speed of sound in the gas mixture, is taken to be much la
than all other length scales in the system, including the tra
verse dimensions of the duct characterized byr h , the hy-
draulic radius.6 The thermoacoustic variables can be e
panded in harmonics to first order

p5pm1R@p1~x!eıvt#,

T5Tm1R@T1~x,r !eıvt#,

r5rm~x!1R@r1~x,r !eıvt#, ~6!

u5R@u1~x,r !eıvt#,

c5cm~x!1R@c1~x,r !eıvt#,

wherev52p f is the angular frequency of the acoustic fie
andx is the longitudinal coordinate along the acoustic du
The parameterr stands for the radial coordinate if the duct
a circular tube, for the coordinatey normal to the duct’s wall
in the boundary-layer approximation, or for both coordina
perpendicular tox in ducts of lower symmetry. Symbolsp,
T, r, u, andc are the pressure, temperature, mass densitx
component of velocity, and concentration of the heavy co
ponent, respectively. The thickness of the thermal bound
layer is the thermal penetration depth

dk5A2k/vrcp5A2k/v, ~7!

where k is the thermal conductivity of the gas,cp is the
isobaric heat capacity per unit mass, andk is the thermal
diffusivity. Similarly, the viscous boundary layer is define
by the viscous penetration depth

dn5A2m/vr5A2n/v, ~8!

where m is the viscosity andn is the kinematic viscosity.
Another fundamental length scale involved in the mixtu
system is the mass diffusion length

dD5A2D/v, ~9!

whereD5D12 is the mutual diffusion coefficient for the bi
nary mixture.

It is convenient to define two ratios of the length sca
that appear repeatedly in the analysis. The Prandtl numb
defined as

s5~dn /dk!2, ~10!

and describes the relative extent of the viscous and the
effects. This ratio is<2/3 for binary mixtures of monatomic
ideal gases. A second ratio is

L5~dk /dD!2, ~11!

which compares the relative importance of thermal cond
tion to mass diffusion.
1676 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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III. A SIMPLE BUCKET-BRIGADE MODEL

S&S showed that the time-averaged separation fl
alongx is due to oscillating motion and concentration, wi
suitable time phasing, in the gas about a thermal penetra
depth from the wall of the duct. These phased oscillatio
constitute a bucket-brigade shuttling of one component in
x direction and the other component in the2x direction. In
order to depict this process it was useful to consider
behavior of the gas at a fixed location in a duct, but
describing saturation qualitatively in this section it is eas
to follow the processes in moving parcels of the gas. To g
intuition about the most interesting mechanism that cau
saturation of the time-averaged concentration gradient in
duct, we consider the caricature of oscillations with standi
wave phasing shown in Fig. 1.

In this crude approximation, the time-averaged sepa
tion flux may be carried by the gas parcel approximatelydk

from the wall, because this parcel may experience both
cillating concentration and oscillating motion~with suitable
phasing!. Hence, the time-averaged separation flux will st
when the concentration oscillationuc1u is zero in the gas
parcel approximatelydk from the wall. This will occur when
the oscillating diffusion between that parcel and those ad
cent to the wall, indicated by the wide arrows, is also ze

According to Eq.~58.11! from Landau and Lifshitz,5 the
diffusive mass-flux density vector is

i52rDF¹c1
kT8

T
¹TG . ~12!

Using Fig. 1 to estimate the values on the right-hand side
Eq. ~12! when the transverse component of the fluxi y50,
and henceuc1u50, for the parcel a distancedk from the wall
yields

05
cm2~cm1ux1u dcm /dx!

dk
1

kT8

Tm

uT1u
dk

, ~13!

so that

S dcm

dx D
sat

;
kT8

Tm

uT1u
ux1u

. ~14!

Finally, usingT15p1 /rmcp andx15^u1&/ıv, where^ & de-
notes the spatial average over the duct’s cross section,
becomes7

S dcm

dx D
sat

;
g21

g
kT8

up1u
pm

v

u^u1&u
. ~15!

We can expect that the quantitative theory developed in
next sections will be in qualitative agreement with Eq.~15!,
so that the thermoacoustic mixture separation can only oc
when the concentration gradient is less than approxima
(dcm /dx)sat. For future convenience, then, let us defi
(dcm /dx)sat exactly according to Eq.~15!, and we also de-
fine

Gc5
dcm /dx

~dcm /dx!sat
. ~16!
D. A. Geller and G. W. Swift: Saturation of thermoacoustic mixture
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Gc is always real and may loosely be regarded as a figur
merit for the progress of the separation process tow
saturation.8

IV. THE FIRST-ORDER THEORY

We can derive the lowest-order theory for the saturat
of thermoacoustic separation by preserving terms contain
the longitudinal concentration gradientdcm /dx in the equa-

FIG. 1. Illustration of five typical parcels of gas, to guide the intuition abo
the saturation concentration difference. The three parcels abutting the
are immobilized by viscosity. The parcel farthest from the wall, shown at
two extremes of its motion, is too far from the wall to experience oscillat
temperature gradients or oscillating concentrations. The intervening pa
also shown at the two extremes of its motion,might experience concentra
tion oscillationsuc1u due to oscillating thermal diffusion, indicated by th
wide arrows. The filled wide arrows represent diffusion of the heavy co
ponent, while the open arrows represent diffusion of the light compon
The thermal diffusion ratiokT is assumed to be positive, as for the He–
mixtures in our experiments. The heavy component diffuses toward
isothermal boundary during compression, provided that the longitud
concentration gradientdcm /dx is not too large. In this boundary-layer pic
ture, we denote the transverse coordinate byy in place ofr .
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tions of two-component fluid dynamics. We will continue
assumedTm /dx50 as in S&S, because our result will b
complicated enough even in the absence of a tempera
gradient.

From S&S Eqs.~17!–~18! for the convection and diffu-
sion of c,

]c

]t
1u•¹c52

1

r
¹• i5¹•FD¹c1S DkT8

T D¹TG , ~17!

we now obtain

c11
u1

ıv

dcm

dx
5

dD
2

2ı F¹ r
2c11

kT8

Tm
¹ r

2T1G , ~18!

to first order in the oscillating quantities, where¹ r
2 denotes

the parts of the Laplacian belonging to the transverse co
dinates.

We now write Eq.~20! from S&S for the first-order
oscillating heat transfer~or diffusion of entropy! in the gas
mixture

rmTmS ıvs11u1

dsm

dx D
5k¹ r

2T12FkT8S ]g

]cD
p,T

2TmS ]g

]TD
p,c

G¹• i1 , ~19!

whereg is the Gibbs free energy per unit mass, and with
divergence of the first-order oscillating mass flux

¹• i152ıvrmc12rmu1

dcm

dx
, ~20!

according to Eqs.~17! and~18! above. We cannot discard th
dsm /dx term, as the gradient in entropy will not be neg
gible when there is a concentration gradient along the d
Instead, we use the identity~22! from S&S to write

dsm

dx
5

cp

Tm

dTm

dx
2S ]g

]TD
p,c

dcm

dx
2

1

rmTm

dpm

dx
. ~21!

The first term on the right-hand side is zero, because of
assumption at the outset of zero temperature gradient.
last term is zero too, because we assume that the mean
sure is constant throughout the duct. If we eliminates1 from
~19! by means of S&S’s~22!, substitute our~21! into ~19!,
and define for future convenience the dimensionless quan

«[
~kT8 !2

cpTm
S ]g

]cD
p,T

5
g21

g

kT
2

nH~12nH!
, ~22!

as in S&S Eqs.~24! and ~45!, we finally obtain

T15
p1

rmcp
1

«Tm

kT8
c11

dk
2

2ı
¹ r

2T11
«Tm

ıvkT8

dcm

dx
u1 . ~23!

This differential equation differs from~23! of S&S only
through the appearance of the new, final term on the righ

Up to this point we have avoided specifying our du
geometry, and we can proceed a bit further in that mo
First, note that we can writeu1 in terms of its average ove
the cross-sectional area^u1& as

t
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e
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^u1&

12 f n
~12hn!, ~24!

where (12hn) describes the velocity profile as a function
position on the cross section, andf n[^hn&. Equations~18!
and~23! constitute two coupled partial differential equatio
in T1 andc1 . Solving Eq.~23! for c1 , inserting the result in
~18!, and using Eq.~24! yields

T15
p1

rmcp
1

1

2ı
@dk

21dD
2 ~11«!#¹ r

2T11
dk

2dD
2

4
¹ r

4T1

1
dD

2

2ı

^u1&
12 f n

«Tm

ıvkT8

dcm

dx
¹ r

2hn , ~25!

which is similar to Eq.~27! of S&S. This can now be solved
for T1 as a function of the coordinates. Because of the n
term appearing on the right, this inhomogeneous differen
equation forT1 is driven by the concentration gradient an
u1 , as well as byp1 .

To determine a solution forT1 , we must apply appro-
priate boundary conditions to our fourth-order different
equation. One boundary condition is provided by assum
the wall of the duct to be isothermal, so thatT150 at the
wall. The wall is generally isothermal because the solid ha
much higher heat capacity and thermal conductivity than
gas. A second boundary condition can be taken by requi
that there be no net flux of concentration into the wall

i r uwall}F¹rc11
kT8

Tm
¹rT1G

wall

50. ~26!

Inserting~23! and ~24!, this becomes

05F ~11«!¹rT12
dk

2

2ı
¹ r

3T1

1
^u1&

12 f n

«Tm

ıvkT8

dcm

dx
¹rhnG

wall

. ~27!

For some duct geometries, such as the infinite slab, these
boundary conditions specify four equations, so that the s
tion is uniquely defined. For the boundary-layer and circu
tube geometries we consider, though, these conditions
vide only two equations and it is necessary to impose
additional restriction that the solution be finite everywhe
inside the duct.

To proceed further, one must now specify a geometry
the duct. The boundary-layer solution is of limited practic
interest, but it yields a relatively simple expression for t
separation flux and demonstrates the main features of t
moacoustic separation which are present in any geometr
the boundary-layer limit~transverse duct dimensions@dn!,
we have¹ r

2[]2/]y2, with y the direction perpendicular to
the boundary. We will also investigate the problem for
circular tube of arbitrary diameter: the algebraic manipu
tions are almost identical, except for the presence of so
normalization factors that prevent simplifications from o
curring. In the circular tube, ¹r→]/]r and ¹ r

2

→(1/r )]/]r (r ]/]r ), and we ignore thef derivatives be-
cause of cylindrical symmetry.9 In Eqs. ~25! and ~27!, we
1678 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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also interpret the higher-order differential operators as¹ r
3

→¹r¹ r
2 and ¹ r

4→¹ r
2¹ r

2 , consistent with the derivation o
these equations.

For the boundary-layer limit

hn5e2(11ı)y/dn and f n5
~12ı !dn

2r h
, ~28!

while for a circular tube of radiusR, the oscillating velocity
u1 of Eq. ~24! is expressed in terms of

hn5
J0@~ ı21!r /dn#

J0@~ ı21!R/dn#
,

~29!

f n5
2 J1@~ ı21!R/dn#

J0@~ ı21!R/dn#~ ı21!R/dn
,

where theJi are cylindrical Bessel functions. Direct subs
tution shows that the solution to Eq.~25! must be of the form

T15
p1

rmcp
@12B hn2C hkD2~12B2C!hDk#, ~30!

with the same length scales for they or r dependence as
found by S&S

dkD
2 5 1

2 dk
2@ 11~11«!/L1A@11~11«!/L#224/L #, ~31!

dDk
2 5 1

2 dk
2@ 11~11«!/L2A@11~11«!/L#224/L #. ~32!

For the boundary-layer calculation, we choose all theds to
be positive, in order to satisfy the aforementioned requ
ment that the solution remain finite asy→`. For the cylin-
drical tube, we can choose theds to be positive because th
functionsJ0 are even; theY0 solutions to Eq.~25! have been
discarded because they diverge at the center of the tube.
final coefficient 12B2C in Eq. ~30! has been chosen so th
the isothermal boundary condition,T1uwall50, is explicitly
obeyed. Substitution into Eq.~25! leads to

B5
ıe2ıu«

12 f n

s

~12s!~12sL !2«s
Gc , ~33!

where u is the phase of the acoustic impedance, i.e.,
phase by whichp1 leadsU1. Next, substitution into the un
usual ‘‘zero transverse flux’’ boundary condition~27! yields

C5
f Dk~dk

2/dDk
2 21!2B@ f n~s21!/s1 f Dk~dk

2/dDk
2 21!#

f Dk~dk
2/dDk

2 21!2 f kD~dk
2/dkD

2 21!
.

~34!

In the boundary-layer approximation, this simplifies furth
to

CBL5CS&SF12BS 11
s21

As

dk

ALdkD2dDk
D G , ~35!

whereCS&S is defined as in Eq.~33! of S&S

CS&S5
AL dkD2dDk

~11AL !~dkD2dDk!
. ~36!

One sees immediately that fordcm /dx→0,
D. A. Geller and G. W. Swift: Saturation of thermoacoustic mixture
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B→0 and CBL→CS&S. ~37!

So, our expression returns the results of S&S when the c
centration gradient is zero. Whether or not the concentra
gradient is zero, Eq.~30! for the complex temperatureT1

reduces to the ordinary thermoacoustic result as the the
diffusion ratio is reduced to zero, just like the express
~30! of S&S. WhenkT8→0 and, therefore,«→0, it follows
that B→0; and, as before~i! if L>1, thendkD→dk , dDk

→dD , and C→1, and ~ii ! if L,1, then dkD→dD , dDk

→dk , andC→0.
Finally, the complex concentrationc1 can be determined

by inserting Eq.~30! for T1 into Eq. ~23!, with ~24! and
either ~28! or ~29!

c152
p1

rmcp

kT8

«Tm
FCS 12

dk
2

dkD
2 D hkD

1~12B2C!S 12
dk

2

dDk
2 D hDk1BS 12

1

s Dhn

1
rmcp

p1

^u1&
12 f n

«Tm

ıvkT8

dcm

dx
~12hn!G . ~38!

Notice in particular the fourth term in this equation, which
proportional to (2u1 /ıv)•dcm /dx52x1•dcm /dx where
x1 denotes the complex first-order oscillating particle d
placement~i.e., the tidal displacement!. In other words, this
term describes the change in concentration inside a sta
ary control volume due to the flow of gas into this volum
from a point aboutx1 away along the axis of the tube, whe
the mean concentration will generally be different wh
dcm /dxÞ0. This portion of the oscillating local concentra
tion, call it cx1 , becomes comparable to the other terms
the concentration gradient approaches its saturation va
However, cx1 does not ultimately contribute to the time
averaged transport of concentration, because it is exactly
out of phase from the conjugate velocityũ1 .

V. THE SEPARATION FLUX THROUGH SECOND
ORDER

Next, we seek the time-averaged mole flux of the hea
component along thex axis, through second order. Fro
Landau and Lifshitz,5 the mass-flux densities arercu1 i and
r(12c)u2 i for the heavy and light components, respe
tively; this is necessary in order to preserve the definition
u as equal to the momentum of a unit mass of the gas.
mole fluxes of the two components are therefore

ṄH5A ^rcu1 ī &/mH , ~39!

and

ṄL5A ^r~12c!u2 ī &/mL , ~40!

wherei is thex component ofi and the overbar denotes th
time average. For the equimolar process of interest to
ṄH52ṄL . Expanding Eq.~39! yields

ṄH5ṄH,m1ṄH,21ṄH,41¯ , ~41!
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 D. A
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where the odd-order terms are zero because the time ave
of a periodic function is zero.

SettingṄH,m52ṄL,m yields a mean velocity

um5
mavg~mH2mL!

mHmL

i m

rm
. ~42!

Formally, this should have been included in Eq.~6!, but we
argue here that it is negligible. There are three ways in wh
um could potentially modify the results of acoustics as d
rived here. The first-order continuity equation~18! would, in
principle, gain a term (um /ıv)dc1 /dx, but this contribution
is of order dD /l smaller than all the other terms in tha
approximate equation and can be ignored, as long asl is
much larger than any other length scale in the system.
equation for heat transfer~19! would also gain a new first-
order termrmTmum (ds1 /dx), but this contribution is again
of orderdD /l smaller than the other terms in that equatio
Finally, in our expression below for the second-order m
flux ~45! there would emerge a new term
(A/2)um R@^r̃1c1&#, but this portion of the flux is approxi-
mately um /a times smaller than the main term
(A/2)rm R@^c1ũ1&#. In our experiments, we always ha
um /a,531028 so that theum^r̃1c1& contribution to the
flux was negligible. We thus can safely ignore thisum from
steady diffusion, a mean flow which the experimenter do
not directly adjust, in our harmonic expansion of the veloc
u(x,r ) in Eq. ~6!. Further, we note that the arguments abo
hold identically for an externally imposed steady flow velo
ity um . In that case, an arbitraryum will not affect the mole
fluxes associated with the acoustics, provided thatum!a.
Only the zeroth-order mole fluxes Eqs.~39! and ~40! will
change through the addition of this imposedum to the mean
velocity from Eq.~42!, and the mole fluxes measured in
frame moving with velocityum are the same as the mo
fluxes when the appliedum50.

Using Eqs.~42! and~12! ~with dTm /dx50! in Eq. ~39!
yields

ṄH,m52rAD
dcm

dx

mavg

mLmH
~43!

for the zeroth-order diffusive molar flux of the heavy com
ponent. Using Eqs.~2! and~3!, this can be recast in the mor
familiar form

ṄH,m52NAD
dnH

dx
, ~44!

whereN is the total number of moles per unit volume. U
like the thermal diffusion ratiokT @cf. Eq. ~5!#, the diffusion
constantD is the same for either measure of concentrati
nH or c. This ordinary diffusion, driven by the concentratio
gradient alongx but independent of the acoustic field, alwa
works against the molar flux of thermoacoustic mixture se
ration derived next.

Using Eq.~39! to write all possible second-order term
for ṄH,2 yields a sum of many terms, each of which can ha
factors with subscriptsm, 1, and 2. The terms containingum

are negligible at this order, as argued above. Thei 2 term,
1679. Geller and G. W. Swift: Saturation of thermoacoustic mixture
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proportional toDdc2 /dx, is negligible compared toṄH,m

for the non-negligibledcm /dx of interest to us. This leave
us with simply

ṄH,25
Arm

2mH
R@^c1ũ1&#1

cm

mH
Ṁ2 , ~45!

where Ṁ25A R@^r1ũ1&#/21Arm^u2,0& is the net second
order mass flux, andA is the cross-sectional area of the du
Using ṄH52ṄL again, this time at second order, and ag
neglectingi 2 gives

Ṁ25ṀH,2~12mL /mH!. ~46!

Combining Eqs.~45! and ~46!, we finally have for the
second-order mole flux of the heavier component

ṄH,25
mavg

mHmL

Arm

2
R@^c1ũ1&#. ~47!

Using Eqs.~38! and ~24!, along with the definition of
volumetric velocityU15A^u1&, we can write
nt

lly
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Arm

2
R@^c1ũ1&#

5
1

2

kT8 /«

cpTm

RH p1Ũ1

12 f̃ n

FCS dk
2

dkD
2

21D ^hkD~12h̃n!&

1~12B2C!S dk
2

dDk
2

21D ^hDk~12h̃n!&

1B
s21

s
^hn~12h̃n!&G J . ~48!

The thermoacoustic mole flux from Eqs.~47! and ~48!, plus
the mole flux from diffusion given above in Eq.~44!, was
integrated using the Bessel-function forms for thehi , and is
compared with the data in Sec. VII.

Further progress can be made in the boundary-layer
proximation. Making use of the integral identity~47! from
S&S, we calculate
Arm

2
R@^c1ũ1&#5

dk

4r h

kT8 /«

cpTm

RH p1Ũ1

12 f̃ n

FCBLS 12
dkD

2

dk
2 D ~dkD /dk2As!2ı~dkD /dk1As!

~dkD
2 /dk

21s!

1~12B2CBL!S 12
dDk

2

dk
2 D ~dDk /dk2As!2ı~dDk /dk1As!

~dDk
2 /dk

21s!
2B

1

ı S s21

As
D G J ~49!
in place of S&S’s intermediate result~48!. If we take r h

@dk , this portion of the mass flux can again be coerced i
a compact form similar to S&S’s~49! to first order ind/r h

Arm

2
R@^c1ũ1&#5

dk

4r h

kT8

cpTm
$F travR@p1Ũ1#

1FstandI@p1Ũ1#1Fgradup1uuU1uGc%,

~50!
o
where

F trav5
sAsL2As2sAL~dkD /dk1dDk /dk!

~11AL !@~11s!~11sL !1«s#
, ~51!

Fstand5
2sAsL1As2sAL~dkD /dk1dDk /dk!

~11AL !@~11s!~11sL !1«s#
, ~52!

as before, and we additionally define
Fgrad5
AsL~12s2!~11AL !1«As~AL21!1@~s221!L1«sAL#~dkD /dk1dDk /dk!

~11AL !@~11s!~11sL !1«s#@~12s!~12sL !2«s#/s
, ~53!
o
representing the effect of the building gradient. We fina
arrive at

ṄH,25
dk

4r h

g21

g

kT

RunivTm
up1uuU1u

3@F travcosu1Fstandsinu1FgradGc# ~54!

in the boundary-layer limit, whereRuniv is the universal gas
constant. S&S plottedkTF trav and kTFstand vs mole fraction
nH for He–Ar mixtures; in Fig. 2 we reproduce those tw
curves and include the correspondingkTFgrad, which is of
comparable magnitude and also goes to zero atnH50 and
nH51. Equation~54! shows that, neglectingṄH,m, satura-
tion of the separation process~i.e., ṄH,250! occurs at

Gc52
F travcosu1Fstandsinu

Fgrad
, ~55!
D. A. Geller and G. W. Swift: Saturation of thermoacoustic mixture
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which is of order 1 as we came to expect at the end of S
III, with details shown in Fig. 3.

Simply by substituting in the definition~16! for Gc , Eq.
~54! can also be written as

ṄH,25
dk

4r h

g21

g

kT

RunivTm
up1uuU1u@F travcosu1Fstandsinu#

1
dk

4r h

rmuU1u2

mavgvA
Fgrad

dnH

dx
. ~56!

In this form, it is apparent that the new effect always oppo
mixture separation, becauseFgrad,0, and hence this term’s
contribution toṄH,2 always opposesdnH /dx. Being inde-
pendent ofp1 , this term represents a mixing phenomen
occurring in any laminar oscillating flow of a mixture in
duct. Watson10 studied this problem in great detail, givin
results for arbitraryr h /dn in circular and two-dimensiona
‘‘slab’’ ducts. In our notation, Watson’s boundary-layer res
is

FIG. 2. Comparison of the three geometrical prefactors describing the s
ration flux for He–Ar.

FIG. 3. The figure of merit for separationGc for ṄH,250, as a function of
Ar mole fraction in He–Ar mixtures foru5180° andu5270°.
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002 D. A
c.

s

t

ṄH,252
dn

4r h

rmuU1u2

mavgvA

AsL

~11AsL !~11sL !

dnH

dx
. ~57!

This is identical to theuU1u2 term in Eq.~56!, if our Fgrad is
evaluated with«50. Although « is often small, Watson’s
neglect of it is not strictly valid. Mass diffusion and heat flu
are inextricably linked in mixtures, as is most easily seen
our Eq. ~23! with p150, and so oscillating temperatur
should not necessarily be neglected in the problem Wat
considered.

VI. REMIXING BY RAYLEIGH STREAMING

Rayleigh streaming11 provides another mixing proces
that can work against thermoacoustic mixture separat
The steady circulation of Rayleigh streaming within the du
will tend to carry heavy-enriched gas in one direction in o
part of the duct’s cross section and light-enriched gas in
other direction in another part of the duct’s cross section
illustrated in Fig. 4, thereby mixing the separated gases. F
tunately, lateral diffusion of mass between these coun
flowing streams will tend to reduce the net mixing, and w
be most effective at doing so in small ducts.

We have found no citations in the literature regardi
Rayleigh streaming in a gas mixture, including the effect
nonzero« on T1 , and indeed this calculation appears ve
challenging. Hence, here we will provide only an order-o
magnitude estimate in boundary-layer approximation, in
circular tube, to get a rough idea of the magnitude of t
effect and its dependence on key variables. The orde
magnitude11 of the second-order, streaming mass-flux dens
ṁ2,s,w just outside the boundary layer at the wall of the tu
is

ṁ2,s,w;up1uu^u1&u/a2. ~58!

This mass-flux density typically has a periodic depende
on the phase betweenp1 and^u1&, and hence will be zero for
some phasing, but we ignore this issue here. For lam
flow, the mass-flux-density distribution over most of the tu
is then given by

a-

FIG. 4. ~a! For laminar flow, the streaming mass-flux density is parabolic
the tube, except within the viscous boundary layer~negligibly thin in this
figure!, where it must approach zero at the wall. For a duct closed on b
ends, the mass-flux densityṁ2,s(r ) averages to zero over the cross sectio
~b! In the steady state, the net streaming flux of the heavy component in
fixed volume in space, centered on coordinates (x,r ), is balanced by the flux
of heavy mass out of this volume by diffusion.
1681. Geller and G. W. Swift: Saturation of thermoacoustic mixture
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ṁ2,s~r !5ṁ2,s,w~2r 2/R221!, ~59!

if we ignore the complicated details of howṁ2,s goes to zero
from the edge of the boundary layer to the wall itself a
insist that^ṁ2,s&50 for our closed system. This distributio
of mass-flux density will tend to carry gas enriched in o
component in one direction in the center of the tube, wh
r ,R/&, and gas enriched in the other component in
other direction in the rest of the tube.

In the absence of mitigating factors, these two coun
flowing enriched-gas streams could be imagined as flow
independently along the entire length of the tube, effectiv
carrying light-enriched gas all the way from the ‘‘light’’ res
ervoir at one end of the tube to the ‘‘heavy’’ reservoir at t
other end of the tube, and vice versa. Such mixing might
catastrophically large. Fortunately, for the experimental c
ditions of interest to us here, these two counterflow
streams have plenty of time to exchange significant m
with each other via diffusion, very analogous to the way h
is exchanged between fluid streams in a counterflow h
exchanger, so the remixing effect is greatly reduced. T
characteristic transit time for streaming the full lengthl of
the tube,rml /ṁ2,s,w , is 10 to 100 times larger than the later

diffusion timeR2/D. For a quantitative estimate of the ma
nitude of the mixing under these conditions, we consider
steady-state concentrationcm(x,r ) in a control volume at
some fixed location (x,r ) in the tube. The steady-state co
centration is maintained by the competition between a
streaming flow along the concentration gradient and ra
diffusion, obeying the equation

ṁ2,s~r !
dcm~x,r !

dx
5rmD

1

r

d

dr
r

dcm~x,r !

dr
. ~60!

We assume that the diffusion is effective enough t
dcm /dx can be regarded as independent ofr , so that this
equation can easily be integrated when Eq.~59! is substituted
for ṁ2,s(r ). The result is

cm~x,r !5E1
dcm

dx Fx1
ṁ2,s,w

rmD S r 4

8R2 2
r 2

4 D G , ~61!

with E an r -independent constant of integration that we ha
no need to evaluate. Then, the mixing flux can easily
obtained by integrating the product of Eqs.~59! and ~61!

ṄH,4,stream5
1

mH
E

0

R

cmṁ2,s 2pr dr ~62!

52
p

48

dcm

dx

ṁ2,s,w
2 R4

mHrD
~63!

;2
p

48

dnH

dx

mL

mavg
2

up1u2u^u1&u2R4

a4rD
, ~64!

where ther -independent terms in Eq.~61! disappear in the
integration, and the final step simply requires substitution
Eqs.~2! and ~58!.

To judge the seriousness of the threat imposed by
fourth-order effect, we can take the ratio ofṄH,4,streamto the
1682 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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intrinsic remixing described by theuU1u2 term at the end of
Eq. ~56!. Using the simple identitiesrma25gpm and A
5pR2, we obtain

ṄH,4,stream

Ṅintrinsic

;
1

12

mL

mavg

R3

FgraddkdD
2

up1u2

g2pm
2

. ~65!

With Fgrad and mL /mavg of order unity and, typically,
up1u/pm no larger than approximately 0.1, we see that it
probably necessary to keepR less than 10d if we want to
keep the mixing effect of streaming acceptably small. For
experiments described below, we always haveR<4.8dk and
R<4.5dD , and up1u/pm<0.03, so we anticipate no signifi
cant contribution from streaming. However, we must keep
mind the approximate nature of Eq.~58!. This is only a
rough estimate, and other circumstances can easily vio
the approximations leading to Eq.~65!.

VII. COMPARISON WITH EXPERIMENT

The mole flux expanded to second order in the acou
variables is seen from Eqs.~41!, ~44!, and~56! to be linear in
the concentration gradientdnH /dx. The contribution from
streaming is also proportional todnH /dx, but it was esti-
mated above to be too small to detect under our experime
conditions. Considering terms through second order, th
we can calculate the saturation gradient easily by set
ṄH50. For example, if the duct is so narrow that ordina
diffusion can be neglected, one finds from Eq.~56! that the
final separation in the boundary-layer limit is a sinusoid
function of the phasing

dnH

dx
52

g21

g

vkTA

pm

up1u
uU1u

F travcosu1Fstandsinu

Fgrad
.

~66!

Although the boundary-layer approximation yields t
most compact expression for the separation flux, the exp
sion remains qualitatively the same regardless of the d
geometry. We have therefore used our circular-tube calc
tion from Sec. V to calculate the expected final separati
corresponding to the two tubes studied in our experime
The narrower of the two tubes described below was cho
so thatṄH,m andṄH,4,streamwould be small and the new term
from Sec. V proportional touU1u2 would be emphasized. Th
wider tube, in contrast, was selected in order to demonst
the convergence of the exact, circular-tube calculation to
of the boundary-layer limit derived in Sec. V.

In order to test our theory experimentally, we used t
apparatus presented in Ref. 2. The acoustic field inside
tube was provided by the compressions of metal bello
housed in closed reservoirs at either end. The bellows w
driven by independent linear motors, so that we could cre
arbitrary phasings and amplitudes in the sound field. T
ducts were studied, the first of which was a copper tube 4
mm in diameter andl 50.914 m long, driven at 10 Hz with
pressure amplitudes as high as 2.5 kPa. The second, w
duct was a stainless-steel tube of 1.52 cm diameter and 0
m length, driven at 15 Hz at amplitudes up to 1.25 kPa. T
sample was a 50–50 mixture of helium and argon at ro
D. A. Geller and G. W. Swift: Saturation of thermoacoustic mixture
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temperature and at a mean pressure of 80 kPa, which is
proximately the local atmospheric pressure. Complex p
sure amplitudesp1,top andp1,bottomwere measured in the tw
reservoirs using piezoresistive transducers and lock-in am
fiers. From these measurements we inferred the wave in
tube to be

p1~x!5p1,bottom

sink~ l 2x!

sinkl
1p1,top

sinkx

sinkl
, ~67!

and

U1~x!5
ı~12 f n!A

vrm

dp1

dx
, ~68!

wherex50 at the bottom end of the tube and the comp
wave number is given by

k5
v

a
A11~g21! f k

12 f n
. ~69!

We evaluatea, rm , f n , andf k using properties of the 50–5
mixture ~ignoring theirx dependence fordcm /dxÞ0!, and
we use the Bessel-function expressions forf n and f k . For
the display of data here, we usep1 andU1 at x5 l /2.

FIG. 5. Dependence of final separation on the phasing betweenp1 andU1 .
~a! Data for the 4.75-mm tube are scaled touZu570 MPa•s/m3. The solid
curve is generated from an exact calculation for this circular tube and
cludes the effect of steady diffusion from Eq.~44!. The dashed curve is the
boundary-layer limit calculation for the narrow tube and also includes
remixing from steady diffusion. The boundary-layer expression is inapp
priate for the 4.75-mm tube, because the radius of the tube is not m
greater than the boundary-layer thickness. Although the boundary-layer
culation deviates greatly from the exact calculation and from the data i
periodic phase dependence, it still yields a reasonable value for the m
tude of the maximum separation.~b! For the 1.52-cm tube, all data wer
taken with uZu510 MPa•s/m3 and up1uuU1u50.1 W. The solid curve is
again the result of a circular-tube calculation, while the dashed curve is
boundary-layer limit calculation. For the 1.52-cm tube,R;5 d and the
boundary-layer calculation is fairly accurate.
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The first verification of our circular-tube calculation fo
an arbitrary-diameter tube was in experimentally demonst
ing the calculated dependence on phaseu for the narrow
cylindrical tube. The data are compared against our the
both in the boundary-layer limit and in the exact case for o
geometry, in Fig. 5~a!. Not all the data for the 4.75-mm tub
in this figure were taken at the exact same value ofup1uuU1u
or of acoustic impedanceZ5p1 /U1 . Because the values o
uZu varied over an order of magnitude among the data,
fractional separation for each point was normalized to
intermediate value ofuZu by multiplying by (70 MPa
•s/m3)/uZu, as suggested by Eq.~66!. This scaling is valid if
ṄH,m and ṄH,4,streamare much smaller thanṄH,2 . Neverthe-
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FIG. 6. The saturation value of the concentration gradient as a functio
specific acoustic impedanceuzu for fixed up1uuU1u and fixed phasingu. For
the 4.75-mm tube,up1uuU1u50.05 W andu5245°, while for the 1.52-cm
tube up1uuU1u50.1 W andu512°. Points are measurements, and lines
circular-tube calculations.

FIG. 7. The saturation gradient with varyingup1uuU1u and withuZu now held
fixed. For the narrow tube,uZu5100 MPa•s/m3 andu5245°, and for the
wide tube,uZu510 MPa•s/m3 and u512°. Points are measurements, an
lines are circular-tube calculations. In the absence of ordinary diffusion
acoustic streaming, each curve would be a horizontal line withdnH /dx at
its asymptotic value forup1uuU1u→`.
1683. Geller and G. W. Swift: Saturation of thermoacoustic mixture
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less, there are small (;15%) deviations inup1uuU1u between
the points, which cause some of the scatter in the d
through the presence of theṄH,m term. Several data point
are also shown in Fig. 5~b! for the phase dependence
separation in the 1.52-cm tube. In this case, the bound
layer and circular-tube calculations give quite similar resu
although the circular-tube calculation is still in better agre
ment with the data.

In view of Eqs.~41!, ~44!, and~56!, one is able to dem-
onstrate the effect of each remixing term by varyingup1uuU1u
and uZu independently, while maintaining a fixed phasing
the acoustic field in the tube. In order to minimize erro
arising from small deviations in the experimental phasi
and to maximize the resolution of our separation meas
ment, we chose that value ofu that yielded the greatest fina
separation for each tube. As seen in Fig. 5, for the nar
tube this angle was approximately245°, whereas for the
wide tube the maximum was at 12°; the boundary-layer c
culation gives the largest gradient at saturation foru;18°.
Figure 6 shows the nearly linear relationship between fi
gradient and specific acoustic impedance for the narrow tu
which is in very good agreement with our calculations. T
deviation of the filled circles and their associated curve fr
a linear relationship is almost entirely due to the flux fro
ordinary diffusion,ṄH,m : had we helduU1u2 constant instead
of up1uuU1u, the function would be a straight line.

The small deviations of the data from the calculat
curves may derive from several sources. First, the satura
gradient (dnH /dx)sat depends onnH , which itself varies
along the length of the tube. We have not calculated the e
profile of nH along the tube, although one can in principle
so for our apparatus using the fact that the system is clo
so that the total number of moles of each gas is conser
Second, the thermophysical properties of the gas mixture
calculated as in Giacobbe12 and may contain errors of a few
percent at our operating pressure and temperature for
50–50 mixture. Finally, no effort was made to accurat
control the temperature of the apparatus, and the amb
temperature of the laboratory varied by as much as 5 °C o
the course of an experiment.

Data for the wide tube are also shown in Fig. 6. T
nonlinearity of the saturation gradient vs specific acou
impedance is much more pronounced in this case than fo
narrow tube. Althoughup1uuU1u for these data is twice that o
the narrow-tube data, the area of the wide tube is ten tim
greater, so that the remixing flux from steady diffusion
proportionately higher.
1684 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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In Fig. 7, we show the effect of the diffusion term mo
clearly by varyingup1uuU1u at constantuZu. Steady diffusion
competes more effectively with the separation process w
the separation rate is made small. In view of Eq.~64!, the
saturation gradient should begin to decrease again at hi
values of up1uuU1u due to streaming. However, we are n
able to attain such large values ofup1uuU1u in our apparatus,
and other nonlinear effects may set in that limit the appli
bility of our analysis for such operating conditions.

ACKNOWLEDGMENTS

This work was supported by the Office of Basic Ener
Sciences in the U.S. Department of Energy under cont
No. W-7405-ENG-36. The authors are grateful to Phil Spo
and Scott Backhaus for several useful discussions.

1G. W. Swift, and P. S. Spoor, ‘‘Thermal diffusion and mixture separat
in the acoustic boundary layer,’’ J. Acoust. Soc. Am.106, 1794 ~1999!;
107, 2299~E! ~2000!; 109, 1261~E! ~2001!.

2P. S. Spoor and G. W. Swift, ‘‘Thermoacoustic separation of a He–
mixture,’’ Phys. Rev. Lett.85, 1646~2000!.

3Thermal diffusion was first discovered theoretically from the kine
theory of gases by D. Enskog and S. Chapman independently. An acc
including the original references can be found in K. E. Grew and T.
Ibbs, Thermal Diffusion in Gases~Cambridge University Press, Cam
bridge, 1952!.

4B. E. Atkins, R. E. Bastick, and T. L. Ibbs, ‘‘Thermal diffusion in mixture
of inert gases,’’ Proc. R. Soc. London, Ser. A172, 142–158~1939!.

5L. D. Landau and E. M. Lifshitz,Fluid Mechanics~Pergamon, New York,
1982!.

6The hydraulic radiusr h of a tube or duct is defined as the ratio of its cro
section to its perimeter. For a right circular cylinder, the hydraulic rad
is equal to one half of the cylinder radius.

7Readers who are familiar with standing-wave thermoacoustic engines
refrigerators will recognize that the above discussion is similar to
description of the critical temperature gradient, which differs fro
(dcm /dx)sat by the factorkT8/Tm .

8Note that Eqs.~15! and~16! may equally well be expressed in terms of th
mole fraction. Use of Eqs.~2! and ~5! shows that these are equivalent t

SdnH

dx D
sat

5
g21

g
kT

up1u
pm

v

u^u1&u
, and Gc5

dnH /dx

~dnH /dx!sat
.

9For consistency with the prior literature, we denote the longitudinal dir
tion along the tube byx. Where we refer to cylindrical coordinates, the
we consider the set to be (x,r ,f).

10E. J. Watson, ‘‘Diffusion in oscillating pipe flow,’’ J. Fluid Mech.133,
233–244~1983!.

11W. L. M. Nyborg, ‘‘Acoustic Streaming,’’ inPhysical Acoustics, edited by
W. P. Mason~Academic, New York, 1965!, Vol. II B, pp. 265–331.

12F. W. Giacobbe, ‘‘Estimation of Prandtl numbers in binary mixtures
helium and other noble gases,’’ J. Acoust. Soc. Am.96, 3568–3580
~1994!.
D. A. Geller and G. W. Swift: Saturation of thermoacoustic mixture


